Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest
نویسندگان
چکیده
Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature-dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host-pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis. Upon egg hatching, caterpillars were reared in thermostat-controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone- and group-reared caterpillars, although the lone-reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group-reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean pest, velvetbean caterpillar may increase its damage on soybean fields under a scenario of global warming as caterpillars may reach the developmental resistance faster, and thus decrease their susceptibility to biological control by AgMNPV.
منابع مشابه
Relationship between Moroccan locust (Dociostaurus maroccanus) population densities and rangeland plant properties in Golestan province (Case study: Qaraqar-Bozorg rangelands)
The Moroccan locust (Dociostaurus maroccanus Thunberg) is one of the most important species of locusts in Iran and many parts of the world, which causes great damage to pastures and agricultural products every year. Since a main part of the life cycle of this insect is spent in pastures, recognizing the relationship between locusts and plant properties are important in the rangeland management ...
متن کاملThe phenotypic plasticity of the aquatic invertebrate Caenis latipennis in response to environmental conditions in the Kheirood Kenar River, Iran
Phenotypic plasticity is the capability of an organism to change its shape in response to the environmental condition. The present study aimed to investigate the phenotypic plasticity of the aquatic invertebrate Caenis latipennis using outline analysis. Samples were collected from up- and downstream of the Kheirood Kenar River, identified to the species level and photographed using a digital ca...
متن کاملDefoliating insect immune defense interacts with induced plant defense during a population outbreak.
During population outbreaks, top-down and bottom-up factors are unable to control defoliator numbers. To our knowledge, details of biotic interactions leading to increased population density have not been studied during real population outbreaks. We experimentally assessed the strength of plant defenses and of insect immunocompetence, assumed to contribute to active insect resistance against pa...
متن کاملQTL analysis for diamondback moth resistance in canola (Brassica napus L.)
Diamondback moth (DBM), Plutella xylostella L. is the most injurious defoliage insect pest of canola in Ardabil province of Iran. It occurs annually and causes damage in canola fields. This study was performed to identify QTLs controlling resistance to diamondback moth using SSR and RAPD markers. An F2:4 population of 180 families derived from crossing between cv. ‘SLMO46’ and cv. ‘Quantum’ wer...
متن کاملEconomic and ecological perspectives of farmers on rice insect pest management
Understanding farmers’ perception is important in the development of sustainable and cost-effective integrated pest management strategies. Hence, farmers’ perception on rice insect pests and pesticide use was evaluated by selected 112 farmers composed of 77% males and 23% females, over the rice growing areas of North Cotabato, Central Mindanao, Philippines. 62% of farmers that were interviewed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016